Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

2,5-Dicarboxyanilinium chloride monohydrate

Giuseppe Bruno,^a* Archimede Rotondo,^a Giovanna Brancatelli,^a Francesco Nicoló^a and Nadia Marino^b

^aDipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Universitá degli Studi di Messina, Via Salita Sperone 31, 98166 Vill. S. Agata – Messina, Italy, and ^bDipartimento di Chimica, Universitá della Calabria, Via P. Bucci 14/c, 87036 Rende – Cosenza, Italy

Correspondence e-mail: gbruno@unime.it

Received 6 July 2006 Accepted 7 August 2006 Online 12 September 2006

The title compound, $C_8H_8NO_4^+ \cdot Cl^- \cdot H_2O_6$, is the chlorohydrated form of 2-aminobenzene-1,4-dicarboxylic acid, the basic crystal structure of which is still not known. Molecules are linked by classical N-H···O, O-H···O, N-H···Cl and O-H···Cl hydrogen bonds, mainly along the molecular plane, into sheets built by unusual $R_6^4(26)$, $R_6^4(22)$ and $R_4^3(22)$ rings. The stacking between layers is stabilized by another N-H···Cl hydrogen bond and by π - π interactions between aromatic rings facing each other.

Comment

It is known that several aromatic species with functional groups develop specific intermolecular interactions, providing tectons (specific building blocks; Hosseini, 2003) suitable for crystal engineering. In particular, aromatic carboxylic acid (Biradha *et al.*, 1998; Ferguson *et al.*, 1998; Félix *et al.*, 2000) and amino groups (Bensemann *et al.*, 2003; Karle *et al.*, 2003) can act as hydrogen-bond donors and acceptors, keeping the direction of the hydrogen bonds approximately along the molecular plane. Often, the flat extension of such hydrogen-bond interactions leads to one-dimensional supramolecular

tapes or two-dimensional supramolecular layers (Russell & Ward, 1996), whereas π - π stacking interactions will link layers into a three-dimensional framework (Glidewell *et al.*, 2004). These substrates are widely harnessed in the design of functional organic solids, and also in the building of metal–organic scaffolds with specific properties (Shi *et al.*, 2005; Arora & Pedireddi, 2003). 2-Aminobenzene-1,4-dicarboxylic acid

(2-aminoterephthalic acid, 2aTPT) is well known as a ligand for metal–organic frameworks (MOFs) for systematic structural design, with possible applications in methane storage (Eddaoudi *et al.*, 2002). Because of its interesting functional groups, in order to extend the π -conjugated system we have

Figure 1

A view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Dotted lines indicate hydrogen bonds.

Figure 2

A perpendicular view of the (201) crystallographic plane covered by $R_6^4(26)$, $R_6^4(22)$ and $R_4^3(15)$ rings, whose disposition is shown also in the schematic representation. Dotted lines indicate hydrogen bonds.

obtained the corresponding salicylideneimine by a condensation reaction (unpublished data). Starting from simple structural reports concerning directional intermolecular interactions (Bruno *et al.*, 2004), we decided to move on to the study of chlorohydrated 2aTPT, (I), since suitable crystals were obtained from water-methanol solutions.

Compound (I) crystallizes in the $P2_1/c$ space group. The asymmetric unit contains one 2,5-dicarboxyanilinium cation, a Cl⁻ counter-ion and a water molecule. The aromatic cation presents a planar conformation [maximum deviation from the mean molecular plane for atom O2 of 0.108 (5) Å; see also geometric parameters in Table 1].

The crystal packing of (I) is mainly stabilized by classical hydrogen bonds involving the water molecule and the Clanion (Table 2). As the O-H and N-H groups are hydrogenbond donors along the molecular plane, linked to coplanar acceptors, the development of a corrugated supramolecular layer is observed. In this bidimensional array lying roughly along the (201) crystallographic plane, several repeating ring units, determined by the above-mentioned hydrogen bonds, can be distinguished. The surface is covered by two centrosymmetric hexagon-shaped units, with graph-set motifs (Bernstein et al., 1995) of $R_6^4(26)$ and $R_6^4(22)$, and by a triangular ring, with graph-set $R_4^3(15)$ (Fig. 2). Along the perpendicular direction, the undulating sheets are stacked by a vertical hydrogen bond $[N8 \cdots Cl1^i = 3.229 (3) \text{ Å}, H8C \cdots$ $Cl1^{i} = 2.35$ Å and N8-H8C···Cl1ⁱ = 167°; symmetry code: (i) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$ and also by $\pi - \pi$ interactions; the distance between close aromatic rings facing each other is 3.374 Å.

Experimental

2aTPT (4 mg) was dissolved in hot methanol (5 ml) and then 1 M aqueous hydrochloric acid (35 µl) was added. Brown crystals of (I) suitable for X-ray analysis were obtained after slow evaporation of the resulting mixture.

Crystal data

C₈H₈NO₄⁺·Cl⁻·H₂O $M_r = 235.62$ Monoclinic, $P2_1/c$ a = 6.5170 (10) Å b = 16.670 (3) Å c = 9.560 (2) Å $\beta = 108.69$ (2)° V = 983.8 (3) Å³ Data collection Bruker P3 diffractometer $\omega/2\theta$ scans

Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.860, T_{\max} = 0.962$ 2395 measured reflections 1741 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.117$ S = 1.031743 reflections 140 parameters H-atom parameters constrained Z = 4 D_x = 1.591 Mg m⁻³ Mo K α radiation μ = 0.39 mm⁻¹ T = 298 (2) K Irregular, brown 0.40 × 0.19 × 0.11 mm

1155 reflections with $I > 2\sigma(I)$ $R_{int} = 0.024$ $\theta_{max} = 25.1^{\circ}$ 1 standard reflection every 50 reflections

intensity decay: none

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0478P)^2 \\ &+ 0.3568P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.008 \\ \Delta\rho_{\text{max}} &= 0.25 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.23 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

C7-O10	1.214 (3)	C9-O12	1.211 (3)	
C7-O11	1.318 (3)	C9-O13	1.315 (4)	
C2-C1-C7-O10	7.5 (5)	C5-C4-C9-O12	-0.1(4)	
C6-C1-C7-O10	-169.0(3)	C3-C4-C9-O12	-179.7(3)	
C2-C1-C7-O11	-174.1(3)	C5-C4-C9-O13	179.9 (3)	
C6-C1-C7-O11	9.4 (4)	C3-C4-C9-O13	0.3 (4)	

Table 2			
Hydrogen-bond geometry	(Å,	°).	

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
	0.00	2.2	2 19((2)	171
N8-H8A···CII	0.89	2.3	3.186 (3)	1/1
$N8 - H8B \cdot \cdot \cdot O12^{\circ}$	0.89	2.16	2.720 (3)	120
$N8 - H8C \cdots Cl1^{n}$	0.89	2.35	3.229 (3)	168
$O11 - H11 \cdots Cl1^{m}$	0.82	2.19	3.002 (2)	173
$O13-H13\cdots O14^{iv}$	0.82	1.78	2.600 (3)	173

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iii) x + 1, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iv) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

H atoms were located in a difference Fourier map and placed in idealized positions using the riding-model technique, with C–H = 0.93 Å, N–H = 0.89 Å and O–H = 0.82 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(N,O)$. The best refinement was obtained with the ψ -scan (North *et al.*, 1968) absorption correction performed by *XSCANS* (Siemens, 1989).

Data collection: *P3/V* (Bruker, 1989); cell refinement: *P3/V*; data reduction: *XDISK* (Bruker, 1989); program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Bruker, 1997); software used to prepare material for publication: *PARST97* (Nardelli, 1995) and *WinGX-PC* (Version 1.6.4.05; Farrugia, 1999).

We are grateful to the Italian MURST and to the Centro Interdipartimentale per la Diffrattometria dei Raggi X for kind provision of financial support and facilities.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3013). Services for accessing these data are described at the back of the journal.

References

- Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem. 68, 9177-9185.
- Bensemann, I., Gdaniec, M., Lakomecka, K., Milewska, M. J. & Połoński, T. (2003). Org. Biomol. Chem. 1, 1425–1434.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Biradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 11894–11903.
- Bruker (1989). *P3/V* and *XDISK* (Release 4.21/v). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Bruker (1997). XP and XPREP (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruno, G., Rotondo, A., De Luca, L., Sammartano, S. & Nicoló, F. (2004). Acta Cryst. C60, o287–o289.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.

Eddaoudi, M., Jaheon, K., Rosi, N., Vodak, D., Watcher, J., O'Keefe, M. & Yaghi, O. M. (2002). *Science*, **295**, 469–472.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Félix, O., Hosseini, M. W., De Cian, A. & Fisher, J. (2000). *Chem. Commun.* pp. 281–282.
- Ferguson, G., Glidewell, C., McManus, G. D. & Meehan, P. R. (1998). Acta Cryst. C54, 418–421.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, 035–037.
- Hosseini, M. W. (2003). Coord. Chem. Rev. 240, 157-166.
- Karle, I., Gilardi, R. D., Rao, C. C., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr. 33, 727–749.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Russell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654-1666.
- Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany. Shi, X., Zhu, G., Wang, X., Li, G., Fang, Q., Wu, G., Tian, G., Xue, M., Zhao, X.,
- Wang, R. & Qiu, S. (2005). *Cryst. Growth Des.* **5**, 207–213.
- Siemens (1989). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.